General introduction to representation theory

Laurent C. Chapon

ISIS Facility, Rutherford Appleton

Laboratory, UK

Representation theory

- Method for simplifying analysis of a problem in systems possessing some degree of symmetry.
- · What is allowed vs. what is not allowed

Keyword: <u>Invariance</u> of the physical properties under application of symmetry operators.

Spectroscopy

Use to predict vibration spectroscopic transitions that can be observed

- Ground state characterized by ϕ^{0}
- Excited state characterized by ϕ^I
- Operator O
- Transition integral:

$$T = \int \phi^0 O \phi^1$$

 The integrand must be invariant under application of all symmetry operations

IR-Raman active modes

 CO_2

IR active, change in dipole moment

Dipole moment operator

Raman active, change in polarizability

Operator for polarizability

Crystal field

• Ce³⁺ 4f¹ electronic configuration

MO-LCAO

The molecular orbitals of polyatomic species are linear combinations of atomic orbitals:

$$\Psi = \sum_{r} c_i \phi_i$$

If the molecule has symmetry, group theory predicts which atomic orbitals can contribute to each molecular orbital.

MO-LCAO

Phase transitions in solids

Phase transitions often take place between phases of different symmetry.

High symmetry phase, Group G₀

- This is a "spontaneous" symmetry-breaking process.
- Transition are classified as either 1st order (latent heat) or 2d order (or continuous)

A simple example: Paramagnetic -> Ferromagnetic transition

Landau theory

- Ordering is characterized by a function $\rho(x)$ that changes at the transition.
- •Above T_c , $\rho_0(x)$ is invariant under all operations of G_0
- •Below T_c , $\rho_1(x)$ is invariant under all operations of G_1

$$\delta \rho = \rho_1 - \rho_0 = \sum_{n'} \sum_i c_i^n \Phi_i^n(x) \qquad \text{Basis functions of irreducible Representation of } \mathbf{G}_0.$$

• At T=T_c, all the coefficients c_iⁿ vanish

Landau theory (2)

 Φ is invariant under operations of G, each order of the expansion can be written is given by some polynomal invariants of c_i^{n} .

$$\Phi = \Phi_0 + \sum_{n'} A^n(P, T) \sum_i (c_i^n)^2 + \dots$$

- Thermodynamic equilibrium requires that all A are >0 above T_c.
- In order to have broken symmetry, one A has to change sign at the transition.

$$\Phi = \Phi_0 + \frac{1}{2}a(T)(T - T_c)\eta^2 + C\eta^4 + \dots$$

In a second order phase transition, a single symmetry mode is involved.

Outline

- 1. Symmetry elements and operations
- 2. Symmetry groups (molecules)
- 3. Representation of a group
- 4. Irreducible representations (IR)
- 5. Decomposition into IRs
- 6. Projection
- 7. Space groups

Inversion point $\overline{1}$ ()

Change coordinates of a point (x,y,z) to (-x,-y,-z)

Mirror planes

Proper rotation $C_n(n)$

Improper rotation $S_n(\overline{n})$

Combination of two successive operations:

- 1) Rotation C_n around an axis.
- 2) Mirror operation in a plane perpendicular to rotation axis

S₄ in tetrahedral geometry

Group structure

- Collection of elements for which an <u>associative law</u> of combination is defined and such that for any pair of elements g and h, <u>the product gh</u> is also element of the collection
- · It contains a unitary element, $\underline{\mathbf{E}}$, such that $g\mathbf{E}=g$
- Every element g has an inverse, noted g^{-1} such that $qq^{-1}=E$.

The order of a group is simply the number of elements in a group. We will note the order of a group h.

Multiplication table

Four different operations:

- E
- σ(xz)
- σ(yz)
- C₂(z)

	E	C ₂ (z)	σ(xz)	σ(yz)
E	E	C ₂ (z)	σ(xz)	σ(yz)
C ₂ (z)	C ₂ (z)	E	σ(yz)	σ(xz)
σ(xz)	σ(xz)	σ(yz)	E	C ₂ (z)
σ(yz)	σ(yz)	σ(xz)	C ₂ (z)	E

Classes

Similarity transform: $h = x^{-1}gx$

g and h are conjugate

The set of elements that are all conjugate to one another is called a (conjugacy) class.

Symmetry operations:

$$E, C_3^1, C_3^2, \sigma_{v1}, \sigma_{v2}, \sigma_{v3}$$

$$\sigma_{v1}^{-1}C_3^1\sigma_{v1}=C_3^2$$

Determination of G

Representation of G

A group G is represented in a vector space E, of dimension n, if we form an homomorphism D from G to $GL_n(E)$:

$$\forall g \in G, g \mapsto D(g) \in GL_n(E)$$

$$\forall g, g' \in G, D(gg') = D(g)D(g')$$

$$D(1) = 1$$

$$\forall g \in G, D(g^{-1}) = (D(g))^{-1}$$

Matrices

- If a basis of E is chosen, then we can write D(g) as n by n matrices.
- We will note $D_{\alpha\beta}(g)$ the matrix elements (line α , row β)

Character

The trace (sum of diagonal elements) is noted χ .

$$\chi(g) = \sum_{\alpha} D_{\alpha\alpha}(g)$$

Important reminder:

D'=P-1DP

Matrices that are conjugate to one another have the same trace.

Example: H₂O modes

A symmetry operation produces linear transformations in the vector space E.

H₂O- C₂-axis

$H_2O-\sigma(xz)$

Matrix multiplication

$$\sigma(xz) \times C_2(z) = \sigma(yz)$$

Irreducible representations (IRs)

- D is a representation of a group in a space E.
- D is reducible if it leaves at least one subspace of E invariant, otherwise the representation is irreducible.

$$E = \sum_{i} E_i = E_1 \oplus E_2 \dots$$

Every element of E can be written in one and only one way as a sum of elements of E_i.

IRs

· In matrix terms:

A representation is reducible if one can find a similarity transformation (change of basis) that send all the matrices D(g) to the same block-

diagonal form.

Corresponding blocks are multiplied separately.

IRs

 In a finite group, there is a limited number of IRs.

$$\sum_{i} (l_i)^2 = h$$

C_{3v}	E	2C ₃	$3\sigma_{\rm v}$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

Character tables

- · In a finite group, there is a limited number of IRs.
- · IRs are described in character tables:

A table that list the symmetry operations horizontally, IRs labels vertically and corresponding characters.

C_{3v}	E	$(2C_3)$	$(3\sigma_{\rm v})$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

Great Orthogonality theorem

• For two given IRs D^i and D^j , of dimension I_i and I_j respectively.

$$\sum_{g \in G} D_{\alpha\beta}^{i}(g) D_{\alpha'\beta'}^{j}(g) * = \frac{h}{\sqrt{l_{i}l_{j}}} \delta_{ij} \delta_{\alpha\alpha'} \delta_{\beta\beta'}$$

$$\sum_{g \in G} (\chi^{i}(g))^{2} = h$$

$$\sum_{g \in G} \chi^{i}(g)\chi^{j}(g) = 0$$

GOT

D is a reducible representation.

The number of times that a representation i appears in a decomposition is :

$$n_i = \frac{1}{h} \sum_{g \in G} \chi_i(g) * \chi(g)$$

nA₁=1/6(3*1+2*1*0+3*1*1)=1 nA₂=1/6(3*1+2*1*0+3*-1*1)=0 nE =1/6(3*1+2*-1*0+3*0*1)=1

C _{3v}	Е	2C ₃	$3\sigma_{\rm v}$
A_1	1	1	1
A_2	1	1	-1
Ε	2	-1	0
D	3	0	1

Projection

• Project a vector of the vector space into the space of the IR to find the symmetry adapted vectors.

$$\hat{P}_{\lambda}^{\nu} = \sum_{g \in G} D_{\lambda\mu}(g)^* \hat{g}$$

* indicates complex conjugate

Integrals

$$\int_{-\infty}^{\infty} f(x) dx$$

Space group Symmetry operations

- · Use the Seitz notation $\{\alpha | \mathbf{t}_{\alpha}\}$
- $-\alpha$ rotational part (proper or improper)
- t_a translational part

$$\{\alpha|\tau_{\alpha}\}\ \{\beta|\tau_{\beta}\} = \{\alpha\beta|\alpha t_{\beta} + t_{\alpha}\}$$

Space group: infinite number of symmetry operations

Symmetry axis or symmetry point	Graphical symbol*	Sures vector of a right-handed screw rotation in units of the absents lattice translation vector parallel to the axis	Printed symbol (parti- demosts in percubases)
Identity	Nose	None	1
Twefeld rotation axis Twefeld rotation point (two dimensions)	•	None	2
Dwofeld screw onic: "2 sub-1"	•	4	2,
Threefold rotation axis Threefold rotation point (two dimensions)	•	None	,
Threefold score usin: "I sub-1"	A	+	3,
Threefold acrew usin: "3 mb 2"	A	ė.	31
Fourfold rotation axis Fourfold rotation point (two dissessions)		None	4 (2)
Foundable scores action 14 metral	→ ±	±	4, (2,)
Roseficial scorer action 1d cath 21	4 =	ė.	42(2)
Founfold scorer axis: "4 rab 3"	→ ≒	÷	42 (2)
Stafold rotation axis Stafold rotation point (two dimensions)	•	None	6 (3.2)
Stafold screw axis: '6 mb 1'	*	4	6, (3,-2)
listfold screw axis: '6 mb 2'		1	$6_{g}(3_{g}, 2)$
Soulold scores asias: "6 sub 3"	•	±	6 (3.2)
Sinfold sonry axis: "6 mb 4"	•	9	$6_{k}(3_{k},2)$
Sixfold surev axis: '6 sub 5'	*	ŧ	$6_3(3_2,2_3)$
Centre of symmetry, invention centre: "I ber" Perfection point, missur-point (one dimension)	٠	None	1
Investiga axis: '3 bus'	Δ.	Name	3 (2.3)
avenios axis: '4 but'	4 Z	None	3(2)
anenios asis: '6 bar'		Name	$\delta \equiv 3/m$
Profekl rotation axis with centre of symmetry		None	2/m (1)
Decickl screw axis with centre of symmetry	ý	±	$2_1/m$ (T)
Fourfield rotation axis with center of symmetry	۰ .	None	4/m (3.2.1)
4 sub 2" screw axis with center of symmetry	ý <u>s</u>	1	4 ₂ /m (4, 2, 1)
Stafold cotation axis with center of symmetry		None	6/m (6,3,3,2,1)
% sub-3" scores axis with course of symmetry	6	±	$6_3/m$ $(6,3,3,2_3,\overline{1})$

Symmetry plane or symmetry line	Graphical symbol	Glide vector in units of lattice translation vectors parallel and normal to the projection plane	Printed symbol
teffection plane, mirror plane teffection line, mirror line (two dimensions)		None	M
Axial' glide plane liide line (two dimensions)		Lattice vector slong line in projection plane lattice vector slong line in figure plane	a, borc
Axial' glide plane		$\frac{1}{2}$ lattice vector normal to projection plane	a, b or c
Double' glide plane* (in centred cells only)		Two glide vectors: 1 along line parallel to projection plane and 1 normal to projection plane	
Diagonal' glide plane		One glide vector with neo components: along line parallel to projection plane, normal to projection plane	e .
Diamond' glide plane† (pair of planes; in centred cells only)		along line parallel to projection plane, combined with a normal to projection plane (nerow indicates direction parallel to the projection plane for which the normal component is positive)	d

Group of translation T

T

$$\{1 \mid 000\} \{1 \mid 100\} \{1 \mid 010\} \{1 \mid t\} \{1 \mid 200\} \dots$$
 Γ^{K}
 e^{-ikt}

- ·Infinite abelian group
- Infinite number of irreducible representations, and consists of the complex root of unity.

Basis are Bloch functions.

$$\Phi^{k}(r) = u_{k}(r).e^{ikr}$$

$$u_{k}(r+t) = u_{k}(r) \qquad (t \text{ is a lattice translation})$$

$$\{1 \mid t\}\Phi^{k}(r) = \Phi^{k}(r-t) = u_{k}(r-t).e^{ik(r-t)} = e^{-ikt}\Phi^{k}(r)$$

Space group

Consider a symmetry element $g=\{h|t\}$ and a Bloch-function Φ' :

$$\phi^{k}(r) = u_{k}(r)e^{ikr}$$

$$\phi' = \{h \mid t\}\phi^{k}(r)$$

$$\{1 \mid u\}\phi' = \{1 \mid u\}\{h \mid t\}\phi^{k}(r)$$

$$= \{h \mid t\}\{1 \mid h^{-1}u\}\phi^{k}(r)$$

$$= \{h \mid t\}e^{-ikh^{-1}u}\phi^{k}(r) = e^{-ikh^{-1}u}\{h \mid t\}\phi^{k}(r) = e^{-i(hk)u}\phi'$$

$$\Phi' \text{ is a bloch function } \Phi^{hk}(r)$$

Little group G_k

- By applying the rotational part of the symmetry elements of the paramagnetic group, one founds a set of k vectors, known as the "star of k"
- Two vectors k_1 and k_2 are *equivalent* if they equal or related by a reciprocal lattice vector.
- · In the general case, if all vectors k_1, k_2, \ldots, k_i in the star are not equivalent, the functions Φ_{ki} are linearly independent.
- The group generated from the point group operations that leave k invariant elements + translations is called the group of the propagation vector k or little group and noted G_k.
- In G_k , the functions Φ_{ki} are not all linear independent, and the representation is science & Technology Facilities Council independent.

IRs of G_k

$$g \in G_{\mathbf{k}}$$

$$D(g) = D_{pr}(h)e^{i\cdot 2\cdot \pi\cdot \mathbf{kt}}$$

Tabulated (Kovalev tables) or calculable for all space group and all **k** vectors for **finite** sets of point group elements *h*

Despite the infinite number of atomic positions in a crystal symmetry elements in a space group

...a representation theory of space groups is feasible using Bloch functions associated to k points of the reciprocal space. This means that the group properties can be given by matrices of finite dimensions for the

- Reducible (physical) representations can be constructed on the space of the components of a set of generated points in the zero cell.
- **Irreducible representations** of the Group of vector **k** are constructed from a finite set of elements of the zero-block.

Orthogonalization procedures explained previously can be employed to construct symmetry adapted functions

Symmetry analysis Example 1

· Space group P4mm, k=0, Magnetic site 2c

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5) **Positions** Multiplicity, Coordinates Reflection conditions Wyckoff letter, Site symmetry General: $8 \quad g \quad 1$ (1) x,y,z(2) \bar{x}, \bar{y}, z (3) \bar{y}, x, z (4) y, \bar{x}, z no conditions (5) x, \bar{y}, z (6) \bar{x}, y, z (7) \bar{y}, \bar{x}, z (8) y, x, zSpecial: $X, \frac{1}{2}, Z$ $\bar{\mathcal{X}}, \frac{1}{2}, \mathcal{Z}$ $\frac{1}{2}$, X, Z $\frac{1}{2}, \bar{X}, Z$ no extra conditions .m . x,0,z \bar{x} , 0, z 0, x, z $0, \bar{x}, z$ no extra conditions . m . \bar{x}, \bar{x}, z no extra conditions x, x, z \bar{x}, x, z x, \bar{x}, z 2mm. $\frac{1}{2}$, 0, z $0, \frac{1}{2}, z$ hkl: h+k=2ncb4 m m $\frac{1}{2},\frac{1}{2},\mathcal{Z}$ no extra conditions 0, 0, z $1 \quad a \quad 4 \ m \ m$ no extra conditions

{1|000}

$\{2_z|000\}$

$$\begin{pmatrix} -1 & & & & & \\ & -1 & & & & \\ & & 1 & & & \\ & & & -1 & & \\ & & & & -1 & \\ & & & & 1 \end{pmatrix}$$

$$\{4_z^+|000\}$$

$$\begin{pmatrix} & & & & -1 & \\ & & & 1 & & \\ & & & & 1 & \\ & & -1 & & & \\ 1 & & & & & \\ & & 1 & & & \end{pmatrix}$$

$\{4_{z}^{-}|000\}$

$$\begin{pmatrix} & & & & 1 & \\ & & -1 & & \\ & & & 1 & \\ & 1 & & & \\ -1 & & & & \\ & 1 & & & \end{pmatrix}$$

$$\begin{pmatrix}
-1 & & & & & \\
& 1 & & & & \\
& & -1 & & & \\
& & & -1 & & \\
& & & & 1 & \\
& & & & -1
\end{pmatrix}$$

$\{m_{0yz}|000\}$

$$\begin{pmatrix} 1 & & & & & \\ & -1 & & & & \\ & & -1 & & & \\ & & & 1 & & \\ & & & & -1 & \\ & & & & -1 \end{pmatrix}$$

$\{m_{x-xz}|000\}$

$$\begin{pmatrix} & & & & 1 & \\ & & & 1 & \\ & & & & -1 \\ & 1 & \\ & & -1 & \end{pmatrix}$$

IRs

Irs/SO	{1 000}	{2_00z 000}	{4+_00z 000}	{400z 000}	{m_x0z 000}	{m_0yz 000}	{m_x-xz 000}	{m_xxz 000}
Γ ₁	1	1	1	1	1	1	1	1
Γ_2	1	1	1	1	-1	-1	-1	-1
Γ_3	1	1	-1	-1	1	1	-1	-1
Γ_4	1	1	-1	-1	-1	-1	1	1
Γ_5	1 0 0 1	-1 0 0 -1	i 0 0 -i	-i 0 0 i	0 1 1 0	0 -1 -1 0	0 -i i 0	0 i -i 0
χ(Γ)	6	-2	0	0	-2	-2	0	0

Decomposition into IRs

$$\begin{split} &\eta(\Gamma_1) = \frac{1}{8}(6\times 1 - 2\times 1 + 0\times 1 + 0\times 1 - 2\times 1 - 2\times 1 + 0\times 1 + 0\times 1) = 0 \\ &\eta(\Gamma_2) = \frac{1}{8}(6\times 1 - 2\times 1 + 0\times 1 + 0\times 1 - 2\times -1 - 2\times -1 + 0\times -1 + 0\times -1) = 1 \\ &\eta(\Gamma_3) = \frac{1}{8}(6\times 1 - 2\times 1 + 0\times -1 + 0\times -1 - 2\times 1 - 2\times 1 + 0\times -1 + 0\times -1) = 0 \\ &\eta(\Gamma_4) = \frac{1}{8}(6\times 1 - 2\times 1 + 0\times -1 + 0\times -1 - 2\times -1 - 2\times -1 + 0\times 1 + 0\times 1) = 1 \\ &\eta(\Gamma_5) = \frac{1}{8}(6\times 2 - 2\times -2 + 0\times 0 + 0\times 0 - 2\times 0 + 0\times 0 + 0\times 0) = 2 \end{split}$$

$$\Gamma = \Gamma_2 \oplus \Gamma_4 \oplus 2\Gamma_5$$

Projection onto Γ_2

$$P | 1x > = | 1x > - | 1x > + | 2y > - | 2y > + | 1x > - | 1x > - | 2y > + | 2y > = 0$$

$$P | 1y > = | 1y > - | 1y > - | 2x > + | 2x > - | 1y > + | 1y > - | 2x > + | 2x > = 0$$

$$P | 1z > = | 1z > + | 1z > + | 2z > + | 2z > + | 1z > + | 1z > + | 2z > = 4(| 1z > + | 2z > = 0$$

Shubnikov notation P4m'm'

Projection onto Γ_4

$$P | 1x > = | 1x > - | 1x > - | 2y > + | 2y > + | 1x > - | 1x > + | 2y > - | 2y > = 0$$

$$P|1y>=|1y>-|1y>+2|x>-2|x>-|1y>+|1y>+|2x>-|2x>=0$$

$$P | 1z > = | 1z > + | 1z > - | 2z > - | 2z > + | 1z > + | 1z > - | 2z > - | 2z > = 4(| 1z > - | 2z >)$$

1z+

Shubnikov notation P4'mm'

Projection onto Γ_5

Projection using the (1,1) elements of the matrices

$$P | 1x > = | 1x > + | 1x > -i | 2y > -i | 2y > = 2(| 1x > -i | 2y >)(\phi_1)$$

$$P | 1y > = | 1y > + | 1y > +i | 2x > +i | 2x > = 2(| 1y > +i | 2x >)(\phi_2)$$

$$P \mid 1z > = \mid 1z > - \mid 1z > -i \mid 2z > +i \mid 2z > = 0$$

$$P \mid 2x > = |2x > + |2x > -i| 1y > -i| 1y > = 2(|2x > -i| 1y >)(i\phi_2)$$

$$P \mid 2y > = |2y > + |2y > + i|1x > + i|1x > = 2(|2y > + i|1x >)(-i\phi_1)$$

Projection using the (2,2) elements of the matrices

$$P | 1x > = 2(| 1x > +i | 2y >)(\phi_3)$$

$$P | 1y > = 2(|1y > -i|2x >)(\phi_4)$$

The magnetic modes can be any linear combinations of $\phi_1, \, \phi_2, \, \phi_3, \, \phi_4$

Symmetry analysis Example 2

• Space group $P2_1/m$, $k=(0,\delta,0)$ Magnetic site 4f

 $\textbf{Generators selected} \quad (1); \ t(1,0,0); \ t(0,1,0); \ t(0,0,1); \ (2); \ (3)$

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinates

4 f 1 (1) x, y, z (2) $\bar{x}, y + \frac{1}{2}, \bar{z}$ (3) $\bar{x}, \bar{y}, \bar{z}$ (4) $x, \bar{y} + \frac{1}{2}, z$	4 f 1	(1) x,y,z	(2) $\bar{x}, y + \frac{1}{2}, \bar{z}$	(3) $\bar{x}, \bar{y}, \bar{z}$	(4) $x, \bar{y} + \frac{1}{2}, z$
---	-------	-----------	---	---------------------------------	-----------------------------------

Reflection conditions

General:

0k0: k = 2n

Special: as above, plus

no extra conditions

hkl: k=2n

hkl: k=2n

hkl: k=2n

hkl: k=2n

Little Group G_K

Operation of the point group on the propagation vector

- · Identity \rightarrow k=(0, δ ,0)
- · 2-fold axis \rightarrow k=(0, δ ,0)
- · Inversion \rightarrow -k=(0,- δ ,0)
- · Mirror \rightarrow -k=(0,- δ ,0)
- Only $\{1|000\}$ and $\{2_v|0\frac{1}{2}0\}$ belong to G_K
- \cdot 4f sites are split into two orbits : (1,2) and (3,4) since no operations of G_k transform sites of the first orbit into that of the second orbit

IRs of G_k

Irs/SO	{1 000}	$\{2_{y} 0\frac{1}{2}0\}$
Γ ₁	1	$e^{i\pi\delta}$
Γ_{2}	1	- $e^{i\pi\delta}$

Perform representation analysis for the first orbit. For identity, it is trivial.

$\{2_{y}|0\frac{1}{2}0\}$

- \cdot |1x> is transformed into -|2x>
- · |1y> is transformed into |2y>
- · |1z> is transformed into -|2z>

$$\begin{pmatrix}
 & & & -1 & & \\
 & & & & 1 & \\
 & & & & -1 \\
 -1 & & & & \\
 & & 1 & & & \\
 & & & -1 & & \\
\end{pmatrix}$$

Decomposition into IRs

$$\eta(\Gamma_1) = \frac{1}{2} (6 \times 1 + 0 \times e^{i\pi\delta}) = 3$$

$$\eta(\Gamma_2) = \frac{1}{2} (6 \times 1 + 0 \times -e^{i\pi\delta}) = 3$$

Projection onto Γ_1

$$P | 1x > = | 1x > -e^{-i\pi\delta} | 2x >$$

 $P | 1y > = | 1y > +e^{-i\pi\delta} | 2y >$
 $P | 1z > = | 1z > -e^{-i\pi\delta} | 2z >$

Projection onto Γ_2

$$P | 1x > = | 1x > +e^{-i\pi\delta} | 2x >$$

 $P | 1y > = | 1y > -e^{-i\pi\delta} | 2y >$
 $P | 1z > = | 1z > +e^{-i\pi\delta} | 2z >$

The same can be done for the second orbit

Magnetic diffraction

L.C.Chapon
ISIS Facility, Rutherford Appleton
Laboratory, UK

Outline

- · Nuclear scattering
- Magnetic scattering using a non-polarized neutron beam
- Type of magnetic structures (FStudio)
- · Instrumentation

Scattering cross sections

Incident flux Φ of neutron of wavevector k. Neutron is in the initial state λ After scattering the neutron wavevector is k' and the neutron is in the state λ '

Partial differential cross section:

Number of neutrons scattered per second into a solid angle $d\Omega$ and with final energy between E' and E'+dE'/ $(\Phi d\Omega dE')$

Differential cross section:

Number of neutrons scattered per second into a solid angle $d\Omega/(\Phi d\Omega)$

Scattering cross sections

Incident neutron with wavevector k and state λ Scattered neutron with wavevector k' and state λ '

In the Born approximation:

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{k'}{k} \left(\frac{m}{2\pi\hbar^2}\right)^2 \left| \left\langle k'\lambda' \middle| V \middle| k\lambda \right\rangle \right|^2 \delta(E_{\lambda'} - E_{\lambda} + E - E')$$

Elastic nuclear scattering

In the Born approximation, the scattered intensity is given by:

The interaction between the neutron and the atomic nucleus is represented by the Fermi pseudo-potential, a scalar field.

Elastic magnetic scattering

Cross sections

In the magnetic case, we need to evaluate the matrix element:

$$<$$
 k' σ ' $|$ V_m $|$ $k\sigma>$

$$A(R) = \frac{\mu_0}{4\pi} \frac{\mu_e \times \hat{R}}{R^2}$$

$$B = curl A = \nabla \times A$$

$$V = -\mu_n . B = -\gamma \mu_N 2 \mu_B \frac{\mu_0}{4\pi} \sigma . \nabla \times \left(\frac{s \times \hat{R}}{R^2} \right)$$

$$\vec{\nabla} \times \left(\frac{\vec{s} \times \hat{R}}{R^2} \right) = \frac{1}{2\pi^2} \int \hat{q} \times \vec{s} \times \hat{q} \cdot e^{i\vec{q}\vec{R}} d\vec{q}$$

The magnetic structure we will consider must have a moment distribution that can be expanded in Fourier series.

$$ec{m}_{lj} = \sum_{\{k\}} ec{S}_{kj}.e^{-2\pi i ec{k}\cdotec{R}_l}$$

Unit-cell magnetic structure factor:

$$\vec{M}(\vec{\kappa}) = p \sum_{j} f_{j}(\vec{\kappa}) \vec{S}_{kj} e^{2\pi i \vec{\kappa} \cdot \vec{r}_{j}}$$

Magnetic interaction vector

Magnetic interaction vector:

$$\vec{Q}(\vec{\kappa}) = \vec{\kappa} \times \vec{M}(\vec{\kappa}) \times \vec{\kappa}$$

The intensity of a magnetic Bragg peak I:

$$I \propto \left| \vec{Q}(\vec{\kappa}) \cdot \vec{Q}^*(\vec{\kappa}) \right|$$

Magnetic form factor

In the dipole approximation:

×

$$f(Q) = \langle j_0(Q) \rangle + (1 - \frac{2}{g}) \langle j_2(Q) \rangle$$

International Tables of Crystallography, Volume C, ed. by AJC Wilson, Kluwer Ac. Pub., 1998, p. 513

http://neutron.ornl.gov/~zhelud/useful/formfac/index.html

Notations

 $\vec{\kappa}$ scattering vector

 $\vec{M}(\vec{\kappa})$ Magnetic structure factor

 $\vec{Q}(\vec{\kappa}) \equiv \vec{M}(\vec{\kappa})_{\perp}$ Magnetic interaction vector

 $\vec{\mu}_{\rm n}$ magnetic dipole moment of the neutron

$$\mu_{\rm N} = \frac{e\hbar}{2m_p}$$
 (nuclear magneton)

$$\gamma = 1.913$$

 $\mu_{\rm e}$ magnetic dipole moment of the electron

$$\mu_{\rm B} = \frac{e\hbar}{2m_e} (Bohr \text{ magneton})$$

Visualize magnetic structure with FStudio

Laurent C. Chapon

ISIS Facility, Rutherford Appleton Laboratory, UK

J. Rodriguez-Carvajal

ILL, France

Ions with intrinsic magneti moments

Atoms/ions with unpaired electrons

Ni²⁺

Intra-atomic electron correlation Hund's rule: maximum S/J

 $\mathbf{m} = \mathbf{g}_{\mathsf{J}} \mathbf{J}$ (rare earths)

 $\mathbf{m} = \mathbf{g}_{S} \mathbf{S}$ (transition metals)

What is a magnetic structure?

Paramagnetic state:

Snapshot of magnetic moment configuration

$$E_{ij} = -J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

$$\langle \mathbf{S}_i \rangle = 0$$

What is a magnetic structure?

Ordered state: Anti-ferromagnetic Small fluctuations (spin waves) of the static configuration

Magnetic structure:

Quasi-static configuration of magnetic moments

Types of magnetic structures

Very often magnetic structures are complex due to :

- competing exchange interactions (i.e. RKKY)
- geometrical frustration
- competition between exchange and single ion anisotropies

-....

Types of magnetic structures Amplitude-modulated or Spin-Density Waves "Longitudinal" "Transverse"

Types of magnetic structures

Formalism of prop. Vector: Basics

Position of atom j in unit-cell I is given by:

 $R_{ij}=R_i+r_j$ where R_i is a pure lattice translation

Formalism of prop. Vector: Basics

$$\mathbf{m}_{lj} = \sum_{\{\mathbf{k}\}} \mathbf{S}_{\mathbf{k}j} \ exp\{-2\pi i \mathbf{k} \mathbf{R}_l\}$$

$$\mathbf{R}_{lj} = \mathbf{R}_l + \mathbf{r}_j = l_1 \mathbf{a} + l_2 \mathbf{b} + l_3 \mathbf{c} + x_j \mathbf{a} + y_j \mathbf{b} + z_j \mathbf{c}$$

Necessary condition for real m_{/j}

Formalism of prop. Vector: Basics

A magnetic structure is fully described by:

- Wave-vector(s) {k}.
- Fourier components $\mathbf{S}_{\mathbf{k}\mathbf{j}}$ for each magnetic atom j and wave-vector k. $\mathbf{S}_{\mathbf{k}\mathbf{j}}$ is a complex vector (6 components) !!!
- Phase for each magnetic atom j, Φ_{kj}

Single propagation vector k = (0,0,0)

$$\mathbf{m}_{lj} = \sum_{\{\mathbf{k}\}} \mathbf{S}_{\mathbf{k}j} \quad exp\left\{-2\pi i \mathbf{k} \mathbf{R}_l\right\} = \mathbf{S}_{\mathbf{k}j}$$

- The magnetic structure may be described within the crystallographic unit cell
- Magnetic symmetry: conventional crystallography plus time reversal operator: crystallographic magnetic groups

Single propagation vector k=1/2 H

$$\mathbf{m}_{lj} = \sum_{\{\mathbf{k}\}} \mathbf{S}_{\mathbf{k}j} \ exp\{-2\pi i \mathbf{k} \mathbf{R}_l\} = \mathbf{S}_{\mathbf{k}j} (-1)^{n(l)}$$

REAL Fourier coefficients = magnetic moments
The magnetic symmetry may also be described using crystallographic magnetic space groups

Fourier coef. of sinusoidal structures

- k interior of the Brillouin zone (pair k, -k)
- Real S_k, or imaginary component in the same direction as the real one

$$\mathbf{m}_{lj} = \mathbf{S}_{kj} \exp(-2\pi i \mathbf{k} \mathbf{R}_l) + \mathbf{S}_{-kj} \exp(2\pi i \mathbf{k} \mathbf{R}_l)$$

$$\mathbf{S}_{\mathbf{k}j} = \frac{1}{2} m_j \mathbf{u}_j exp(-2\pi i \phi_{\mathbf{k}j})$$

$$\mathbf{m}_{lj} = m_j \mathbf{u}_j \cos 2\pi (\mathbf{k} \mathbf{R}_l + \phi_{\mathbf{k}j})$$

Fourier coefficients of helical structures

- k interior of the Brillouin zone
- Real component of S_k perpendicular to the imaginary component

$$\mathbf{S}_{\mathbf{k}j} = \frac{1}{2} \left[m_{uj} \mathbf{u}_{j} + i m_{vj} \mathbf{v}_{j} \right] \exp(-2\pi i \phi_{\mathbf{k}j})$$

$$\mathbf{m}_{lj} = m_{uj}\mathbf{u}_{j}\cos 2\pi(\mathbf{k}\mathbf{R}_{l} + \phi_{\mathbf{k}j}) + m_{vj}\mathbf{v}_{j}\sin 2\pi(\mathbf{k}\mathbf{R}_{l} + \phi_{\mathbf{k}j})$$

Centred cells!

Examples. Fstudio

